Transcriptional response of Escherichia coli to ammonia and glucose fluctuations
نویسندگان
چکیده
In large-scale production processes, metabolic control is typically achieved by limited supply of essential nutrients such as glucose or ammonia. With increasing bioreactor dimensions, microbial producers such as Escherichia coli are exposed to changing substrate availabilities due to limited mixing. In turn, cells sense and respond to these dynamic conditions leading to frequent activation of their regulatory programmes. Previously, we characterized short- and long-term strategies of cells to adapt to glucose fluctuations. Here, we focused on fluctuating ammonia supply while studying a continuously running two-compartment bioreactor system comprising a stirred tank reactor (STR) and a plug-flow reactor (PFR). The alarmone ppGpp rapidly accumulated in PFR, initiating considerable transcriptional responses after 70 s. About 400 genes were repeatedly switched on/off when E. coli returned to the STR. E. coli revealed highly diverging long-term transcriptional responses in ammonia compared to glucose fluctuations. In contrast, the induction of stringent regulation was a common feature of both short-term responses. Cellular ATP demands for coping with fluctuating ammonia supply were found to increase maintenance by 15%. The identification of genes contributing to the increased ATP demand together with the elucidation of regulatory mechanisms may help to create robust cells and processes for large-scale application.
منابع مشابه
Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability.
Levels of RpoS increase upon glucose starvation in Escherichia coli, which leads to the transcription of genes whose products combat a variety of stresses. RpoS stability is a key level of control in this process, as SprE (RssB)-mediated degradation is inhibited under glucose starvation. Starvation for ammonia or phosphate also results in increased stress resistance and induction of RpoS-depend...
متن کاملAnalysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures.
Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms ...
متن کاملMicrobial Metabolism of Amino Alcohols
1. Kinetic studies of ethanolamine ammonia-lyase formation by Escherichia coli suggested that coenzyme B12 (5'-deoxyadenosylcobalamin), with ethanolamine, is a co-inducer. 2. Enzymic and immunological tests failed to show the formation of complementary enzyme components induced separately by ethanolamine and cobalamin respectively. 3. Although specific for ethanolamine as the substrate, enzyme ...
متن کاملMetabolic flux responses to pyruvate kinase knockout in Escherichia coli.
The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13C labeling experiments with [U-13C6]glucose in glucose- or ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to...
متن کاملRegulation of glutaminase levels in Escherichia coli.
Nitrogenous metabolites, cyclic adenosine 3':5'-monophosphate (cAMP), and the stage of culture growth all influence the levels of glutaminase A in Escherichia coli, but no variables in culture conditions alter the levels of glutaminase B. Growth of E. coli on culture media containing glucose and excess ammonia results in a rise in the level of glutaminase A as the cultures enter stationary phas...
متن کامل